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1Department of Limnology, Eidgenössiche Anstalt für Wasserversorgung Abwasserreinigung und Gerwässerchutz, Überlandstrasse
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ABSTRACT
The relationships among water level, inundated
area, and shoreline dynamics were investigated in a
bar-braided and an island-braided floodplain of the
Tagliamento River in northeast Italy. Ground-based
surveys with a differential global positioning system
(aGPS) unit were used to delineate all aquatic–
terrestrial interfaces (shorelines) in the active flood-
plain at different water levels. Despite complex in-
undation patterns, a highly significant (P �
0.00001) linear relationship between water level
and arcsine square root of inundated area was
found in both reaches (y � 0.49x � 0.07). A highly
significant (P � 0.00009) second-order polyno-
mial relationship occurred between water level and
shoreline length (y � 87.83 � 65.85x2 � 169.83x).
Using these relationships as simple predictive mod-
els, we converted several years of water-level data
into predictions for degree of inundation and shore-
line length. The plot of the simulated degree of
inundation strongly resembled the actual hydro-
graph. Complete inundation of the active flood-
plains occurred one or two times per year; however,

the degree of inundation at lower water levels was
highly dynamic during most of the year. Simulated
shoreline length averaged 171 m ha�1 (13.6 km
km�1), with a maximum of 197 m ha�1 (15.6 km
km�1) occurring during periods with intermediate
water levels. The corresponding values determined
with GPS were somewhat higher, with an average
value of 181 m ha�1 (14.4 km km�1) and a maxi-
mum of 214 m ha�1 (16.3 km km�1). During major
flood events, actual shoreline length decreased to
28 m ha�1 (2.1 km km�1). Braiding index and
upstream surface hydrologic connectivity were pos-
itively related to water level, whereas total area of
isolated water bodies was negatively related to wa-
ter level. The number of nodes remained high most
of the time during the 2-year study period.

Key words: floodplains; inundation; shoreline
length; water level; predictive model; connectivity;
flood pulse; flow pulse; ground-based survey; Ta-
gliamento River.

INTRODUCTION

Floodplains are complex physical features border-
ing rivers in braided, meandering, or anastomosing
reaches. They are highly dynamic in the natural

state, because floods rework their morphology at
various spatial scales (Hughes and Rood 2001; Ward
and others 2002b). Hydrology is the primary driv-
ing force for morphological and ecological processes
in floodplains (Junk and others 1989; Sparks and
others 1990; Bayley 1991; Spink and others 1998;
Tockner and others 2000b).

Many of the early concepts describing river eco-
systems, such as the river continuum concept
(RCC) (Vannote and others 1980), the nutrient spi-
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raling concept (Newbold and others 1982), and the
serial discontinuity concept (Ward and Stanford
1983), focused on longitudinal patterns and pro-
cesses. The flood pulse concept (FPC) (Junk and
others 1989) explicitly incorporates lateral interac-
tions between the channel and the floodplain and
suggests that the flood pulse is the most important
physical variable for biological processes in tropical
(Junk and others 1989; Bayley 1991) and temper-
ate rivers (Tockner and others 2000b). The focus
given to the lateral dimension by the FPC stimu-
lated many studies that examined the ecological
implications of flooding in stream and river ecosys-
tems (for example, Sparks and others 1990; Bayley
1991; Spink and others 1998). Because of this in-
creased awareness of river–floodplain interactions,
the existing theories were amended to incorporate
the lateral dimensions of river ecosystems (Ward
and Stanford 1995; Fisher and others 1998).

Overbank flooding (flood pulses) may occur sea-
sonally or unpredictably (Poff and Ward 1989). In
addition, rivers may experience many smaller wa-
ter-level fluctuations (“flow pulses” sensu Tockner
and others 2000b) that occur well below bank-full
discharge. Although they are not responsible for the
main morphological restructuring of the ecosystem,
these flow pulses may be important for creating and
maintaining habitat heterogeneity and ecosystem
processes (for example, see Benke 2001). Both
aquatic and terrestrial areas in the floodplain expe-
rience frequent cycles of expansion and contraction
because of small water-level fluctuations (de Vries
1995; Stanley and others 1997; Tockner and others
2000b). Contraction of aquatic habitats, for exam-
ple, fragments populations, reduces habitat avail-
ability, and alters ecosystem processes such as pri-
mary production and nutrient cycling (Stanley and
others 1997).

Expansion and contraction cycles control the
availability of aquatic–terrestrial interfaces (shore-
lines). Shorelines are important habitats for a large
spectrum of organisms, such as fish (Wintersberger
1996; Schiemer and others 2001), birds (Décamps
and others 1987; Reich 1994), and terrestrial inver-
tebrates (Bonn and others 2002). In larger rivers,
shoreline habitats may serve as important flood
refugia (Rempel and others 1999). Additionally,
they control the transfer of matter between aquatic
and terrestrial zones (for example, Naiman and Dé-
camps 1997; Bardgett and others 2001; Ward and
Wiens 2001). With increased channelization and
regulation of rivers across the world (Petts and oth-
ers 1989), shoreline habitat is becoming increas-
ingly rare (Pinay and others 1990; Ward and others
2002a). It is important to investigate the relation-

ship between discharge and available shoreline
habitat in the remaining free-flowing rivers to gain
a better understanding of the functioning of river
systems in their natural state. This insight, in turn,
is of importance for increasing the chances of suc-
cess of river restoration projects (Benke and others
2000). Cycles of expansion and contraction also
determine the availability of several distinct aquatic
habitats, such as backwaters, alluvial channels, and
isolated pools. Increasing human pressure requires
quantitative methods to predict how a river’s form
changes when discharge is altered.

Remote sensing studies have focused on the hy-
dromorphological dynamics of floodplains (for ex-
ample, Lesack and Melack 1995; Mertes 1997).
Aerial photography has been used to analyze long-
term changes in channel configuration of streams
(Gilvear and others 1995) and braided rivers (War-
burton and others 1993). On shorter time scales,
aerial photographs have been used to analyze the
relationship between discharge and channel change
in a braided river (Mosley 1982). Mosley (1982)
showed that increased discharge increased the
availability of deep-water habitat without influenc-
ing the availability of shallow-water habitat. Using
aerial photography, Benke and others (2000) estab-
lished a linear relationship between discharge and
the arcsine of inundated floodplain area for the
subtropical Ogeechee River in the southeastern
United States. Passive microwave observations have
been used to establish a relationship between dis-
charge and degree of floodplain inundation in trop-
ical wetlands (Hamilton and others 1996) and trop-
ical rivers (Sippel and others 1998). Global
positioning systems (GPS) have also been used to
acquire spatial data from floodplains. For instance,
repeated transect measurements were used to de-
velop a digital elevation model (DEM), which was
used to monitor channel change in a braided river
in Scotland (Brasington and others 2000).

We applied differential GPS to gather spatial data
from two braided floodplains at various river stages.
GPS allowed us to acquire data rapidly at any water
level, independent of airplanes or satellites. The
river system that we investigated was distinctly dif-
ferent from the other systems studied so far because
it represents the last large free-flowing Alpine river
in Europe (Müller 1995; Ward and others 1999a).
The goal of this study was to quantify the relation-
ships among water level, inundated area, shoreline
length, and system complexity in a bar-braided and
an island-braided floodplain. Based on the relation-
ship, a predictive model was generated to calculate
the availability of floodplain habitats.
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Study Site

The Tagliamento River is a seventh-order gravel-
bed river located in northeast Italy. It has a catch-
ment area of 2580 km2 and a total length of 172
km. About 70% of its catchment area is located in
the southern limestone dolomite Alps. Average
elevation of the catchment is 1159 m a.s.l, with a
maximum of 2781 m a.s.l. (Ward and others
1999a; Arscott and others 2000). Through a se-
quence of constrained, braided, and meandering
reaches, it flows from the Alps to the Adriatic Sea.
The river has many vegetated islands, which
cover approximately 9% of the entire active
floodplain (Ward and others 1999a). The active
floodplain consists of three major landscape ele-
ments: water, bare alluvial sediments, and vege-
tated islands. Along the Tagliamento, active
floodplain width is up to 1.5 km. The active flood-
plain is fringed by continuous riparian woodland
(Ward and others 1999a; Gurnell and others
2000a).

Although the river has been subject to water
abstraction and channelization (lowermost 25
km), it remains remarkably free of intensive man-
agement. Consequently, the Tagliamento still has
an essentially pristine morphological character
and a natural flood regime (Müller 1995; Ward
and others 1999a). The hydrology is character-
ized by a pluvio-nival regime with frequent flash
floods and flow pulses. Flood pulses generally
occur in spring and autumn (Figure 1B) and have
an extremely low degree of predictability (Cam-
polo and others 1999). The average discharge at
the location where the river leaves the Alps is
approximately 90 m3 s�1, and the 2-, 5-, and
10-year floods are estimated to be 1100, 1600,
and 2150 m3 s�1, respectively (Gurnell and others
2000a). For a more detailed description of the
catchment characteristics and hydrodynamics,
see Ward and others (1999a) and Gurnell and
others (2000a).

This study was carried out in two morphologi-
cally distinct reaches, hereafter referred to as the
“bar-braided reach” and the “island-braided
reach” (reaches III and IV from Arscott and others
2000). The location of both reaches within the
Tagliamento catchment is shown in Figure 1A.
The bar-braided reach was located downstream of
river kilometer 74. Under base-flow conditions,
large areas of exposed sediments and multiple
channels (Table 1) dominated this reach. Its ac-
tive floodplain area was 103 ha, reach length was
1.4 km, and floodplain width was up to 1.0 km. The
island-braided reach was located downstream of

river kilometer 81 and upstream of a narrow
bedrock constrained knick point at Pinzano (Fig-
ure 1A). Total surface area was 143 ha, length
was 1.8 km, and the active floodplain width was
0.8 km. The reach included a complex channel
network with approximately 20 vegetated is-
lands. In addition to main and secondary chan-
nels, many alluvial channels, backwaters, and
isolated water bodies occurred in both reaches.
Exposed sediments in the form of lateral or mid-
channel gravel bars represented the largest pro-
portion of landscape cover elements.

Figure 1. (A) Location of the Tagliamento catchment,
with insets showing the configuration of the bar-braided
and island-braided reaches in May 2000. In the insets,
black indicates floodplain forest and vegetated islands;
dark gray indicates surface water; light gray indicates
exposed alluvial gravel. (B) Stage height for the Taglia-
mento River at the San Pietro gauging station 1.5 km
downstream of the island-braided reach.
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METHODS

Geographical data were collected using a differen-
tial global positioning system (DGPS) rover unit
(TCS1, Trimble, Sunnvale, California, USA). All
shorelines were delineated in situ by walking along
them, carrying the DGPS receiver. Positions were
recorded at 5-sec intervals and later postcorrected
using base station data to obtain a precision of 0.3 m
or less. The base station was located less than 5 km
from both study reaches and remained stationary
during all surveys to record variations in triangula-
tion due to satellite movement.

Data were collected at different river stage
heights following a major flood that started on 26
October 1999. Between 27 October and 15 Novem-
ber 1999, data were collected on five dates in the
island-braided reach and on two dates in the bar-
braided reach (Table 1). The dangerous and time-
consuming task of mapping during flood conditions
forced us to focus our attention on one reach at a
time. Both reaches were mapped again in January
2000 during a period of lower water level (0.74 m).
To obtain comparable data for the bar-braided
reach, we carried out two additional mapping ses-
sions there in April and October 2000, when water
levels reached values comparable to those for which
we mapped the island-braided reach. Finally, in
December 2001, we mapped the bar-braided reach
at low flow (0.10 m). For three of the mapped water
levels, the configuration and extent of inundation
are shown in oblique photographs (Figure 2).

The water levels covered by these surveys ranged
between 2.35 m and 0.74 m at the gauging station of
San Pietro (Figure 1A) for the island-braided reach

and between 1.65 m and 0.15 m for the bar-braided
reach. The mean water level at the San Pietro gauge is
approximately 0.8 m. Due to the frequently changing
and complex bed morphology, cross-sectional chan-
nel profiles change rapidly preventing a reliable esti-
mation of discharge (see Campolo and others 1999;
Gurnell and others 2000a). Consequently, water level
rather than discharge was used in our analysis. Water-
level data were provided by the Direzione Regionale
dell’ Ambiente and the Autorita di Bacino dei Fiume
Isonzo, Tagliamento, Livenza.

We used ARC-INFO (Environmental Systems Re-
search Institute, Redlands, California, USA) software
to generate maps and to determine complexity pa-
rameters from these maps. Sinuosity and braiding
indexes (Friend and Sinha 1993), number of nodes,
and number and total area of floodplain ponds were
determined. Nodes are ecotones within aquatic sys-
tems defined as the intersections between water body
thalwegs (Arscott and others 2000). Channel nodes
are intersections between channel thalwegs with both
upstream and downstream connections. The total
number of nodes also includes intersections with and
within water bodies with only upstream or only
downstream connections. Upstream surface hydro-
logical connectivity (SC) was measured from all maps
following Malard and others (2000), by dividing the
area of channels fed by surface water (Ac) by the total
area of channels with surface flow (A). A Spearman
rank-order correlation was performed to investigate
which parameters best described the relationship be-
tween water level and complexity.

Additionally, we determined total inundated area
and shoreline length from each map. An overlay
function was used to combine all information into

Table 1. Morphological Characteristics of a Bar-braided and an Island-braided Reach of the Tagliamento
River in Northeast Italy (at a Water Level of 0.95 m) and Dates and Water Levels at Which Maps Were
Made

Bar-braided Reach Island-braided Reach

Length (km) 1.5 2.5
Area of active floodplain (ha) 103 143
Area water (%) 35 39.1
Area islands (%) 3.1 10.6
Area exposed sediments (%) 61.9 50.4

Water Level (m) Date Water Level (m) Date
0.15 10 Dec 01 0.74 10 Jan 00
0.74 09 Jan 00 1.02 12 Nov 99
1.00 15 Nov 99 1.23 01 Nov 99
1.20 03 Nov 99 1.50 28 Oct 99
1.46 04 Apr 00 1.65 27 Oct 99
1.65 15 Oct 00 2.35 26 Oct 99
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inundation maps, which showed the extent of inun-
dation for a given water level for each floodplain. The
largest vertical elevation differences found in topo-
graphic transects through the study reaches were
about 2.5 m (see Gurnell and others 2000b). Shore-
line length is expressed in both meters per hectare of
active floodplain and in kilometer per river-kilometer.
Inundated area is expressed as the proportion (%) of
the active floodplain covered by water.

Relative inundation of the active floodplain was
arcsine square-root–transformed and regressed
against water level and reach in a linear model
(Statistica 5.1; Statsoft Inc., Tulsa, Oklahoma, USA).
We assumed that at maximum water-level shore-
line length would equal the length of the border
between the active floodplain and the adjacent ri-
parian forest. This assumption made a second-order
polynomial function the most logical regression
curve. Inundated area was regressed in a linear
model against water level squared, water level, and
reach.

We used the observed relationship as a predictive
model and converted 5 years of water-level data
from the San Pietro gauging station to a time series

of relative inundation and shoreline length. Conse-
quently, a duration curve for the degree of inunda-
tion and a frequency distribution of shoreline
length were generated from the same data.

RESULT

Sinuosity was low and constant (1.0 to 1.24) across
water levels for both reaches (Table 2). The braiding
index reached values as high as 6.87. The Spearman
rank-order correlation showed that both braiding in-
dex and upstream surface hydrologic connectivity
showed a significant positive relationship with water
level. The total area covered by ponds was inversely
related to water level. The total number of nodes was
positively related to the shoreline length. Channel
nodes, sinuosity, and number of ponds were not re-
lated to either water level or shoreline length.

In the bar-braided reach, more than 60 percent of
the total active floodplain area was inundated at the
highest mapped water level (1.65 m). During the
falling limb of the hydrograph, the degree of inunda-
tion decreased monotonously to about 10% at the
lowest mapped water level (0.15 m). During the de-

Figure 2. Oblique photo-
graphs of A the bar-braided
and B the island-braided
reach taken at low, mean,
and high water levels. Ar-
rows indicate the flow direc-
tion. (Photos: C. Yoshimura
and D. van der Nat.)
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cline, the configuration of the channel network
changed from being dominated by upstream-and
downstream-connected channels to a heterogeneous
system of only downstream-connected and isolated
water bodies (Table 2 and Figure 3A). In the bar-
braided reach, complete active floodplain inundation
was estimated to occur at water levels at or above
2.5 m.

Inundated area also decreased monotonously
with receding water level in the island-braided
floodplain. At the highest mapped water level (2.35
m), almost 80% of the active floodplain was inun-
dated. At this water level, only vegetated islands
and very high gravel bars protruded above the wa-
ter in the active floodplain. At the lowest mapped
water level (0.74 m), 20% of the active floodplain
was covered by water. The configuration of the
floodplain consisted of a matrix of exposed sedi-
ments with numerous isolated water bodies and
primarily downstream-connected channels. Several
upstream-connected channels remained, however,
even at the lowest mapped water levels (Figure 2
and Figure 3B). In the island-braided reach, com-
plete active floodplain inundation was estimated to
occur at water levels at or above 3.0 m.

Linear regression of the arcsine square root of
inundation with water level and reach indicated
that the effect of the factor reach was insignificant
(P � 0.70) (Table 3). We therefore excluded this
factor from further analysis and combined the in-
undation data for both reaches (Figure 4A). A new

Figure 3. Inundation patterns for (A) a bar-braided and
(B) an island-braided reach of the Tagliamento River.
Water levels correspond to stage height readings from the
San Pietro gauging station.

Table 2. Complexity Descriptors: Sinuosity, Braiding Index, Channel Nodes, Total Nodes, Number of
Ponds, Total Area of Ponds, Relative Inundation, Upstream Surface Hydrologic Connectivity, and Shoreline
Length for the Bar-braided and Island-braided Reaches at All Mapped Water Levels

Reach
Stage
(m) Sinuosity

Braiding
Index

Channel
Nodes

Total
Nodes

Ponds
(n)

Ponds
A
(m2)

Rel.
Inun.
% SC

Shoreline
(m ha�1)

Bar-braided

0.15 1.24 2.17 24 33 12 14,047 10.8 0.83 108.0
0.74 1.09 1.57 12 42 7 3834 12.6 0.43 145.6
1.00 1.11 5.40 64 99 21 6164 22.6 0.83 212.8
1.20 1.08 5.82 51 93 8 2404 29.5 0.91 214.0
1.46 1.08 4.99 24 60 9 3649 41.6 0.92 195.2
1.65 1.02 6.87 31 54 1 52 58.7 0.99 160.6

Island-braided

0.74 1.00 3.60 34 48 22 7542 24.3 0.84 178.4
1.02 1.00 4.41 50 83 33 12,411 29.4 0.84 212.6
1.23 1.00 4.04 36 78 22 10,491 35.2 0.92 194.5
1.50 1.00 4.94 41 96 22 1112 48.5 0.91 213.4
1.65 1.00 4.93 16 46 11 2216 57.5 0.97 182.6
2.35 1.08 6.26 54 62 4 1010 78.2 1.00 157.8

SC, upstream surface hydrologic connectivity.

{
{
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linear regression model with water level as the only
independent variable showed a significant effect of
water level on degree of inundation (P � 7.6
10�8). The linear regression model was highly sig-
nificant (P � 0.00001, R2

adj � 0.91), (Table 3) and
was described by the following equation:

y � 0.49x � 0.07

where y represents the arcsine square root of inun-
dation and x represents water level (m).

Shoreline lengths ranged from 28 m ha�1 (2.1
km km�1) to 214 m ha�1 (16.3 km km�1) in the
bar-braided reach. Shoreline length peaked at in-
termediate water levels between 1.0 and 1.2 m
(Figure 4B). Shoreline length in the island-braided
reach showed a similar range. The minimum value
of 37 m ha�1 (3.0 km km�1) occurred at complete
active floodplain inundation. The maximum of
212 m ha�1 (17.3 km km�1) occurred at water
levels of between 1.0 and 1.65 m (Figure 4B).

A linear regression model with water level,
squared water level, and reach as independent vari-
ables and shoreline length as the dependent vari-
able indicated that the effect of reach was insignif-
icant (P � 0.10), (Table 3). Hence, data for both
reaches were combined and the regression was re-
peated without reach as an independent variable.
Both water level and squared water level were
found to be highly significant factors (P � 1.20
10�3 and P � 1.52 10�4, respectively). The sec-
ond-order polynomial regression curve (Figure 4B)
was highly significant (P � 0.00009, R2

adj � 0.783)
and was described by the following function:

y � 87.825 � 65.849x2 � 169.829x

where y represents shoreline length (m ha�1) and x
represents water level (m).

Relationships among water level, inundated area,
and shoreline length were used to convert water-
level data for the period between January 1996 and
May 2000 into a time series for inundated area and
shoreline length (compare Figure 5 with Figure
1B). Mapped water levels ranged from 0.15 m to
2.35 m, and water-level data for 1996–2000 ranged
from 0.0 m to 3.24 m.

Due to the linearity of the model, the simulated
curve for inundated area strongly resembled the
hydrograph (compare Figure 1A with Figure 5A).
Predicted shoreline lengths were high, averaging
171 m ha�1 (12.8 km km�1). Short-term reductions
(less than 3 days for each event) in shoreline length
occurred during major flood events.

A duration curve of relative active floodplain in-
undation was used to illustrate inundation time
during the 1996–2000 period (Figure 6). The rate of
increase in inundation was relatively stable during
most of the time series, with sharp increases during
only about 10% of the time, when water levels
were greater than 1.3 m (Figure 6). A frequency
distribution of simulated shoreline length is also
plotted in Figure 6. Shoreline length was low at
minimum and at maximum water levels. Maxi-
mum shoreline length occurred at a water level of
approximately 1.3 m, which was exceeded 10% of
the time. Simulated shoreline length was high
(150–200 m ha�1, 11–15 km km�1) (see also Figure
5B) for most of the time (more than 90%).

DISCUSSION

The importance of the flood pulse for the ecology of
floodplain ecosystems has been well documented
(for example, Junk and others 1989; Bayley 1991;
Tockner and others 2000b). Information about in-

Table 3. Linear Regression Models for Dependent Variables (Arcsine Square Root of Inundation and
Shoreline Length) and Independent Variables (Stage Height, Squared Stage Height, and Reach) for a Bar-
and an Island-braided Reach of the Tagliamento River

Arcsine Square Root Relative Inundation
Shoreline Length
(m ha�1)

Beta P Beta P
Two variables Stage 0.97 2.9 10�7 Three variables Stage2 �2.69 3.96 10�3

Reach �0.02 �0.70 Stage 1.84 2.72 10�2

Reach 0.23 0.10
One variable Stage 0.96 7.6 10�8 Two variables Stage2 �2.73 1.52 10�4

Stage 2.09 1.20 10�3

Regression y � 0.49x � 0.07 Regression y � 87.825 � 65.849x2 � 169.829x
P � 0.00001, R2

adj � 0.910 P � 0.00009, R2
adj � 0.783

Beta and probability values for significant variables are set in boldface type.
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undation dynamics across a range of water levels is
needed to better understand flow and flood dynam-
ics as factors shaping floodplains and their ecology
(Benke and others 2000; Tockner and others 2000b,
2002b). The present paper shows that availability of
aquatic habitats and the ecologically important
aquatic–terrestrial interface (Naiman and Décamps
1997; Ward and others 1999b) are influenced by
frequent minor water-level fluctuations. This sup-
ports the hypothesis that in addition to the flood
pulse, flow pulses below bank-full also constitute a
major physical variable determining ecological pro-
cesses in floodplain systems (Malard and others
1999; Tockner and others 2000b).

This study has shown complex inundation pat-
terns to exist within the active floodplain of a large
semi-natural Alpine river. Most of the time, the
aquatic component of the floodplain was a mosaic
of braided channels (primary, secondary, and ter-
tiary), alluvial channels, and isolated water bodies.
An increase in water level temporarily shifted this
configuration toward a dominance by channels.
Decreases in water level shifted the configuration
toward isolated and downstream-connected water
bodies. The larger number of vegetated islands
(Ward and others 1999a) and large woody debris
deposits (Gurnell and others 2000b; van der Nat
and others 2001) in the island-braided reach re-
sulted in a higher abundance of isolated water bod-
ies such as scour holes (Table 2). These aquatic

Figure 4. (A) Linear regression of relative floodplain in-
undation (arcsine square-root–transformed) versus wa-
ter-level readings from the San Pietro gauging station. (B)
Second-order polynomial regression of shoreline length
versus water-level readings. Solid circles represent the
bar-braided reach; open circles represent the island-
braided reach.

Figure 5. (A) Predicted inundated area and (B) predicted
shoreline length for the period January 1996 through
May 2000 for a bar-braided and an island-braided reach
of the Tagliamento River. Because the regressions for the
bar-braided and the island-braided reaches were not sig-
nificantly different, data from both reaches are combined
here.
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islands, temporary or permanent, are important
habitats and refuges for aquatic invertebrates (U.
Karaus personal communication; Homes and others
1999), fishes (Galat and others 1997, 1998), and
amphibians (Morand and Joly 1995; Griffiths 1997;
Tockner and others, unpublished).

Although the bar- and island-braided reaches dif-
fered considerably in morphology, their inundation
dynamics and shoreline lengths were similar. The
sinuosity of the main channel in both reaches re-
mained low and constant (Table 2). In complex
braided systems, sinuosity is not as suited to de-
scribe shoreline complexity as it is in meandering or
single channel systems. In the Danube downstream
of Vienna, sinuosity was used to quantify shoreline
complexity within the main stem (Schiemer and
others 2001). In our system, total shoreline length,
the braiding index, upstream surface hydrologic
connectivity (SC), and total area of isolated water
bodies best described the relationship between wa-
ter level and complexity. The positive relationship
among braiding index, SC, and water level indicates
a potentially increasing complexity of the aquatic
component of the active floodplain with rising wa-
ter levels (up to a certain point). However, this
increase is partly counteracted by a decrease in
complexity due to a diminishing area of isolated
water bodies.

The water level above which the most rapid mor-
phological changes to the floodplain occur in the
Tagliamento River was estimated to be three times
the average stage height (Arscott 2002). The aver-
age stage height during the period of simulation

was 0.79 m. According to our model, considerable
morphological changes would thus occur at inun-
dations of 89% and more. Five such events have
occurred during the period of simulation (Figure
5A)

The linear relationship between water level and
inundated area in this temperate unregulated river
concurs with that found by Benke and others
(2000) for the subtropical Ogeechee River (south-
eastern United States). In contrast, in the hydrolog-
ically dynamic but morphologically regulated Da-
nube floodplain of the Alluvial Zone National Park,
Austria, inundated area increased stepwise with in-
creasing water level (Tockner and others 2000a).
Therefore, below mean flow, inundated area of the
floodplain increased monotonously but slowly
through seepage inflow.

Above mean water level, overbank flow resulted
in a sudden increase of the inundated area. The
relationship between water level and inundation
was also documented in tropical rivers with predict-
able flooding regimes. For example, in a Pantanal
wetland of South America, a linear relationship was
found between monthly estimates of inundated
area and the flood stages of the previous 2 months
(Hamilton and others 1996). Similar observations
from the Amazon River revealed a second-order
polynomial relationship between monthly esti-
mates of inundated area and river stage (Sippel and
others 1998).

The second-order polynomial relationship be-
tween water level and shoreline length was signif-
icant and similar to the unimodal pattern found by
Tockner and others (2000a) for the Danube (Aus-
tria). The maximum shoreline length found there
(122 m ha�1, 8.5 km km�1) was considerably lower
than the maximum found in this study (213 m
ha�1, 17.3 km km�1).

Applying our predictive regressions from 1 year
of data to 5 years of water-level data creates several
complications. In a system that is morphologically
dynamic, as the Tagliamento River, it is possible
that channel-bed elevations change frequently.
Changes in bed elevation would result in a change
in the stage–discharge relationship. However, there
are indications that this relationship does not alter
too dramatically in our system. Analysis of the hy-
drograph by Arscott and others (2000) indicated
that the yearly average stage height decreased 39
cm over the period of 1982–99. A decline of 2 cm
per year should not have too-serious implications
for the stage–discharge relationship over a 5-year
period. Second, the gauging station at San Pietro is
located at a stable bedrock constriction, making
changes in the stage–discharge relationship less

Figure 6. Duration curve (percentage of time at which
value equaled or exceeded) for floodplain inundation and
a frequency distribution of shoreline length in two
braided floodplains of the Tagliamento River. Because the
regressions for the bar-braided and the island-braided
reaches were not significantly different, data from both
reaches are combined here.
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likely to occur. Third, large flood events dramati-
cally change the configuration of the active flood-
plain in the Tagliamento. In our reaches, as much as
45% of all aquatic habitat was turned over by a
large flood pulse (Arscott 2002). However, at the
same time, the composition of landscape elements
(for example, water, gravel bars) in the active flood-
plain remains more or less the same. Flood pulses
create as many new channels, alluvial channels,
backwaters, and pools as they destroy. Had the
flood pulses altered the stage–discharge relation-
ship, maps made at the same water level before and
after a flood pulse would not have shown similar
compositions.

Some water-level values from the 5-year simula-
tion were outside the range of actually measured
values. Because we have extrapolated in the pre-
dictive model, care has to be taken in interpreting
model outcomes. However, the simulation of inun-
dated area in the study reaches did show a number
of important trends. During 50% of the time, inun-
dated area was lower than 30% (Figure 6). Conse-
quently, during most of the year, the active flood-
plain is a mosaic of aquatic patches within a matrix
of exposed sediments. Complete or near-complete
inundation of the active floodplain occurred three
to four times per year; at these times, all water
bodies were connected by surface-water flow, al-
lowing mixing of populations that were isolated for
much of the year. Animals such as young fish need
these large inundations to disperse from their
spawning grounds to other parts of the river (Fer-
nandes 1997). Additionally, members of various

fish families in temperate European and North
American rivers require flowing water during some
life stages (Galat and Zweimüller 2001).

Shoreline length remained high most of the time,
in contrast to highly regulated rivers that have
much lower shoreline lengths (Table 4). Minimum
shoreline lengths, comparable to the values seen for
regulated rivers throughout the year, only occur
during large spates. With the decreasing availability
of free-flowing rivers, the shoreline interface has
become an endangered fluvial landscape element
(for example, Pinay and others 1990).

The fact that braided reaches of the Tagliamento
River sustain an abundance of shoreline habitat
throughout the year is of considerable ecological
importance. Shorelines provide specific habitats for
a variety of specialized biota (for example, Salo and
others 1986; Décamps and others 1987; Risser
1990; Reich 1994; Wintersberger 1996). High abun-
dance of shoreline is important for sustaining ripar-
ian biodiversity (Risser 1990; Nilsson and others
1997; Maiolini and others 1998; Luken and Bezold
2000). It is also important for facilitating biotic and
abiotic interactions between the aquatic and the
terrestrial zones of the floodplain (Bardgett and
others 2001; Ward and Wiens 2001). The fact that
these habitats are important to rare alluvial flora
and fauna makes preservation of our remaining
free-flowing rivers a significant priority.
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primäre Lebensräume des Flußregenpfeifers (Charadrius dubius).
Vogel Umwelt 8:43–52.

Rempel LL, Richardson JS, Healey MC. 1999. Flow refugia for
benthic macroinvertebrates during flooding of a large river. J
North Am Benthol Soc 18:34–48.

Risser PG. 1990. The ecological importance of land–water eco-
tones. In: Naiman RJ, Décamps H, editors. The ecology and
management of aquatic–terrestrial ecotones. Casterton Hall
(UK): Parthenon. p 7–22.
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